AEROBIC SUBSURFACE MARS Vlada Stamenković NASA Jet Propulsion Laboratory, California Institute of Technology Michael Mischna (JPL), Lewis Ward (Harvard), Woody Fischer (Caltech), Doris Breuer (DLR), Ana Plesa (DLR) & the VALKYRIE Team. Mars has almost no O₂ in its atmosphere today, so aerobic respiration should not matter, <u>right</u>? # Shallow subsurface brines and O₂ implications for aerobic life Stamenković +, Nature Geo (2018) Shallow subsurface brines and O₂ today in 3D...(& also in ancient times?) # Evidence that early Mars was more similar to today? Stamenković +, Nature Geo (2018) - Shallow environments can get O₂ from atmosphere. - At depth, O₂ can be supplied by radiolysis - > see talk by Jesse Tarnas in 30 min. - Aerobic respiration in the Martian subsurface is feasible today as long as there is liquid water (→ likely deep) Min: 0 km Max: 8.24 km ### VALKYRIE* concept: subsurface habitability as a stepping stone *Volatiles And Life: Key Reconnaissance & In-Situ Exploration A. Liquid Water **B. Energy & Nutrients** C. Cellular Stability D. Biomarkers & **Signs of Metabolic Activity** LIFE ## VALKYRIE* concept: subsurface habitability as a stepping stone *Volatiles And Life: Key Reconnaissance & In-Situ Exploration | | Technology | TRL | Rational to Support TRL Claim | Lab Demo
Field Demo | |--|---|----------|--|------------------------| | | Water:
Transient
Electromagnetic
Sounder. Ballistic Loop
deployment. | 4 | Based on existing technology that has been used for over 40 years. Mars TEM systems are being developed. | Yes.
Started. | | | Heat :
Thermal Probe | 8 | Based on existing technology used on Earth. Simple, robust. | Yes.
Yes. | | | Subsurface Access:
Drill (10-100 m) | 5-6
4 | PDD, AG2, & many more ASGARD | Yes. Yes.
No. No | | | Geobiochemical Analysis: Trace Gases. Radiometer. UV/Raman
Spectrometer GC-MS Optical microscope | 8-9 | All successfully flown on MSL or being prepared for Mars 2020. | Yes.
Yes. | | | Surface Constraints:Met StationCamera | 9 | Successfully flown on Phoenix,
MSL | Yes.
Yes. | #### Summary: the Martian deep subsurface